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Abstract  

Background: The long-term health effects of coarse particular matter (PM10-2.5) are challenging 

to assess due to a limited understanding of the spatial variation in PM10-2.5 mass and its chemical 

components. 

Objectives: We conducted a spatially intensive field study and developed spatial prediction 

models for PM10-2.5 mass and four selected species (copper, zinc, phosphorus and silicon) in three 

American cities. 

Methods: PM10-2.5 snapshot campaigns were conducted in Chicago, Illinois, St. Paul, Minnesota, 

and Winston-Salem, North Carolina in 2009 for the Multi-Ethnic Study of Atherosclerosis and 

Coarse Airborne Particulate Matter (MESA Coarse). In each city, samples were collected 

simultaneously outside the homes of approximately 40 participants during 2-week periods in the 

winter and/or summer. City-specific and combined prediction models were developed using land 

use regression (LUR) and universal kriging (UK). Model performance was evaluated by 

cross-validation (CV). 

Results: PM10-2.5 mass and species varied within and between cities in a manner that was 

predictable by geographic covariates. City-specific LUR models generally performed well for 

total mass (CV R2, 0.41 to 0.68), copper (CV R2, 0.51 to 0.86), phosphorus (CV R2, 0.50 to 

0.76), silicon (CV R2, 0.48 to 0.93) and zinc (CV R2, 0.36 to 0.73). Models pooled across all 

cities performed inconsistently at capturing within-city variability. Little difference was observed 

between the performance of LUR and UK models in predicting concentrations. 

Conclusions: Characterization of fine-scale spatial variability of these often heterogeneous 

pollutants using geographic covariates should reduce exposure misclassification and increase the 

power of epidemiological studies investigating the long-term health impacts of PM10-2.5. 
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Introduction  

Although considerable evidence has linked adverse health with fine particulate matter (PM2.5, ≤ 

2.5 µm in aerodynamic diameter) (Brook et al. 2010), there has been little epidemiological 

research examining coarse particulate matter (PM10-2.5, 2.5-10 µm in aerodynamic diameter). 

Toxicological studies have shown that PM10-2.5 can induce reactive oxygen species and initiate 

inflammatory responses in vivo and in vitro (Becker et al. 2005; Monn and Becker 1999; Pozzi et 

al. 2003; Schins et al. 2004;Shi et al. 2003; ). While this suggests a plausible biological 

mechanism for long-term health effects, the few studies that have investigated such relationships 

have generally found weak and non-statistically significant or null associations (USEPA 

2006).One possible explanation for differences between the toxicological and epidemiological 

evidence is that previous epidemiological studies have had a limited ability to characterize 

spatial variations in PM10-2.5. This can be important since PM10-2.5 has relatively short residence 

times in atmosphere due to high gravitational settling (US EPA 2009) and spatial heterogeneity 

has been shown to be large (Burton et al. 1996; Chen et al. 2007; Eeftens et al. 2012a; Houthuijs 

et al. 2001; Wilson and Suh 1997). In addition, there has been limited characterization of 

spatial differences in PM10-2.5 chemical composition which may help to differentiate key sources 

of PM10-2.5 mass (e.g., mineral and roadway dust, sea spray, pollen, and mechanical grinding 

including vehicular brake and tire wear) (US EPA 2009). Improved understanding of the spatial 

variation of PM10-2.5 mass and chemical components is therefore expected to be critical in 

quantifying the long-term effects of PM10-2.5 exposures. 

Since some pollutants, like those from traffic, vary over small spatial scales (i.e., 10-100 meters), 

there is an increasing emphasis on estimating individual-level exposures (HEI 2010). Regression 

models with geographic information system (GIS)-derived covariates such as land use, nearby 
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emission sources, and distance to roadways, termed “land use” regression (LUR) models, are a 

common approach. Universal kriging (UK) is an extension of this methodology that further 

incorporates spatial correlations. Although spatial prediction models are commonly employed for 

PM2.5 and oxides of nitrogen (HEI 2010), very few investigations have generated covariate-based 

spatial prediction models for PM10-2.5 and none, to our knowledge, have created a 

covariate-based, spatial interpolation model for PM10-2.5 species. 

As part of the Multi-Ethnic Study of Atherosclerosis and Coarse Airborne Particulate Matter 

(MESA Coarse), we characterized fine-scale spatial differences in PM10-2.5 mass and chemical 

components within three American cities using data from an intensive monitoring campaign. 

MESA Coarse builds upon the MESA cohort of 6,814 adults from six metropolitan areas (Bild et 

al. 2002) and the MESA Air Pollution project (MESA Air), which investigates the impacts of 

PM2.5 on the progression of atherosclerosis (Cohen et al., 2009; Kaufman et al., 2012). This 

paper presents the MESA Coarse field study design and development of spatial prediction 

models for PM10-2.5 mass, copper, zinc, phosphorus, and silicon. These four chemical components 

were selected because they were shown to be good indicators of brake wear, tire wear, 

agriculture, and mineral dust, respectively, across all three cities, using positive matrix 

factorization (Sturtz et al. 2012). 

Methods  

Sampling Design  

PM10-2.5 concentrations were measured simultaneously over two 2-week periods in two seasons 

outside the homes of approximately 40 MESA participants residing in Chicago, Illinois (April 

8-22, 2009; and August 20-September 3, 2009), St Paul and Minneapolis, Minnesota (January 17 

31, 2009; and May 27-June 10, 2009), and Winston-Salem, North Carolina (February 25-March 
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11, 2009; and July 6-20, 2009). Homes were selected in a targeted approach that aimed to 

maximize geographic coverage as well as variability of features believed to be predictive of 

coarse particles and selected source-specific components. Specifically, we targeted vegetation, 

distance to major roads, as well as rural, commercial, and industrial land use. While most homes 

were sampled during one season only, we collected samples during both seasons at 

approximately one third of homes to assess the stability of concentrations over time. Homes with 

more unique geographic features were oversampled during the second round to ensure sufficient 

variability for modeling. Other repeats were selected at random. Institutional Review Boards at 

each site approved the study and all participants provided written informed consent. 

PM10-2.5  sampling  

Two-week integrated samples were collected using Harvard Personal Environmental Monitors 

(HPEMs, Thermo Environmental Instruments, Franklin, MA) with Medo VP0125 pumps (Medo, 

Hanover Park, IL) calibrated to a flow rate of 1.8 liters per minute (lpm), which has been 

evaluated in ambient field tests against the Harvard Impactor operating at 10 lpm (Lee et al. 

2006). To prevent overloading and minimize the number of pumps required, air flow was cycled 

between paired HPEMs with cut points for PM10 and PM2.5 every 5 minutes over the two week 

sampling periods. Programmable timers allowed for the simultaneous collection of samples 

across all locations in a city. 

All Teflon filters were pre-conditioned for >24-hours at 22.3 ± 1.9°C and 34.7 ± 2.5% relative 

humidity, prior to weighing by microbalance (Mettler Toledo UMT2, Mettler-Toledo Inc., 

Highstown, NJ) (Allen et al. 2001). Samples were analyzed for elements by X-ray fluorescence 

(XRF) spectroscopy by Cooper Environmental Services. Concentrations were estimated by 

subtracting PM2.5 from PM10 based on research by Chen and colleagues(Chen et al. 2011). 
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Many quality control procedures were performed including voiding samples with insufficient 

durations (<9 days), out-of-range air flows (±20%), damaged filters, extreme concentrations over 

the two-week sampling period (>5 standard deviations from the mean), and high sulfur levels in 

the PM10-2.5 fraction (>0.2 µg/m3) since sulfur should be primarily limited to PM2.5. Overall, the 

precision of duplicate PM10, PM2.5, and PM10-2.5 samples was 2%, 10% and 18%, respectively. 

Concentrations were also compared to measurements reported by the Environmental Protection 

Agency’s Air Quality System (AQS) for corresponding time periods during the same year. 

Geographic  covariates  

Table 1 illustrates the covariates derived in ArcGIS 9.3 (ESRI, Redlands, CA) that were 

considered for our spatial prediction models. They include five major categories: 1) land use 

such as commercial, industrial, and residential; 2) local transportation including roadways, 

railways, truck routes, airports, and a traffic dispersion model output; 3) population density; 4) 

ground cover including impervious surface and vegetation; 5) PM10-2.5 emission sources; and 6) 

positional information (MESA Air, 2011). Briefly, land use data included US Geological Survey 

satellite-derived raster images from 2000 (Price 2006) and aerial photography from the 1970s 

and 1980s. Transportation variables were derived from data from TeleAtlas (Lebanon, NH), 

National Transportation Atlas Database 2009 (Bureau of Transportation Statistics 2009), and the 

CALINE line source dispersion model (Wilton et al. 2010). PM10-2.5 emissions were derived 

from the National Emission Inventory Database (http://www.epa.gov/air/data/neidb.html), 

population density was obtained the 2000 US Census Bureau (US Census Bureau 2001), 

imperviousness was downloaded from the National Land Cover Database 2006 (US Geological 

Survey 2011), and vegetation was estimated by the Normalized Difference Vegetation Index 

(NDVI) (Carroll 2008.). 

7
 

http://www.epa.gov/air/data/neidb.html


 

 

       

     

    

        

          

        

        

        

        

 

            

         

     

      

  

      

     

    

    

     

       

Modeling approach  

We utilized LUR and UK to estimate spatial patterns of PM10-2.5 mass, copper, zinc, phosphorus, 

and silicon using approaches previously described by Mercer et al. (Mercer et al. 2011).Our 

primary models were constructed separately for each city, with season included as a predictor 

and an effect modifier of other predictors as needed to account for seasonal variation. Pooled 

models across all cities were also explored in secondary analyses. All stages of this model 

selection procedure were fit using the glmnet package (Friedman et al. 2010) and R 2.7.2 

software (R Development Core Team; http://R-project.org). The resulting prediction models are 

intended to reflect long-term exposures since preliminary data analyses using AQS monitors in 

our study regions previously suggested that the average of two-week samples from two seasons 

was highly correlated with annual average concentrations. 

Given the large number of potential predictors, we followed a process of variable screening that 

began with removal of predictors with insufficient variability (i.e., excluded if 85th percentile 

equaled the 15th percentile). Then, for variables with varying buffer radii, we selected the ‘best’ 

short (50 to 500 m) and long (500 m to 5 km) range buffer based on the highest univariate 

Pearson correlation coefficient with the exposure being modeled. 

Moreover, when multiple predictors were highly correlated with one another (ρ > 0.85), we 

selected the predictor that was most strongly correlated with the exposure, although we 

preferentially excluded latitude and longitude and selected raster-based land use data (collected 

in 2000) over older aerial photography-based data (collected in 1970s and 1980s). Next, we 

applied the least absolute shrinkage and selection operator (LASSO) by changing a tuning 

parameter to reduce the number of variables down to 15 potential variables or less including both 
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main effects and interactions by season (and city for the all-city models) (Friedman et al. 2010). 

Finally, we conducted an exhaustive search to examine all possible combinations of these 15 

covariates, restricting to models with 6 or less main effects. We did not consider interactions 

between predictors other than season or city but did ensure that the main effects were included 

when an interaction with season or city was included in a model. The final combinations of 

variables were selected that resulted in the lowest RMSE and the highest R2under 10-fold cross 

validation. In this method, the dataset was randomly divided into 10 equal sub-datasets, where 

model fitting occurred for each selection of 9-tenths of the data while validating on the final 

tenth. Differences between the true and estimated values of PM10-2.5 concentrations for each 

validation set were then used to calculated RMSE and R2. This method is intended to avoid 

over-fitting of the models to the observed data. 

Sensitivity analyses were conducted to assess the impacts of: 1) excluding outliers (>3 standard 

deviations from city-specific means); 2) data sources of land use variables; 3) selecting buffers in 

a repeated step-wise manner as recommended by Su and colleagues (Su et al. 2009); and 4) 

natural log-transforming concentrations. 

Visualization  

Maps were generated by kriging provided by the spatial analysis package in ArcGIS 9.3at a 

lattice grid over our three cities, with spacing of 0.25 km in urban areas and 1 to 2 km in rural 

areas. 
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Results  

Measured PM10-2.5  mass concentrations  

Between January 17 and September 3, 2009, we collected 235 collocated PM2.5 and PM10 

samples. After our quality control procedures were applied, we had 207 (88%) and 195 (83%) 

valid PM2.5 and PM10 mass measurements, respectively, resulting in 191 (81%) valid sample 

pairs from 118 unique locations (56, 25, and 37 in in Chicago, St. Paul and Winston-Salem, 

respectively, Figure 1). A subset of 34 locations had samples collected during two seasons: 4, 17, 

and 13 in Chicago, St. Paul and Winston-Salem, respectively. 

Table 2 summarizes PM10-2.5 mass and species concentrations by city and season (see 

Supplemental Material, Table S1 for detailed descriptive statistics). Average PM10-2.5 

concentrations (standard deviation) across seasons were 5.7 ± 2.0, 5.3 ± 3.3 and 3.6 ± 1.4 µg/m3 

in Chicago, St. Paul and Winston-Salem, respectively. A strong seasonal difference was seen in 

St. Paul (3.3 ± 2.2 and 6.7 ± 3.3 µg/m3 in winter and summer, respectively) but not the other two 

cities (Chicago: 5.5 ± 2.0 and 5.9 ± 2.1 µg/m3 in winter/early spring and summer, respectively; 

and Winston-Salem: 3.5 ± 1.2 and 3.8 ± 1.6 µg/m3 in winter and summer, respectively). 

Silicon had the largest observed species concentrations, with levels 12 to 260 times larger than 

the three other species (Table 2). Especially high concentrations of silicon were observed in St 

Paul during the summer (720 + 188 ng/m3) whereas the other two cities had lower levels that 

peaked in the winter. Phosphorus concentrations in all three cities were highest in the summer, 

with an approximate doubling of concentrations as compared to the winter in St Paul and 

Winston-Salem. In contrast to the other pollutants that had similar concentration ranges across 

cities, copper and zinc concentrations differed by location, with the highest levels of both 

observed in Chicago, and the lowest levels in Winston-Salem. Zinc was the most variable species 
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in each of the three cities during both the winter (coefficient of variation defined as standard 

deviation over mean: 0.75 to 0.81) and summer (coefficient of variation: 0.69 to 1.27). 

Spatial modeling results  

Data reduction procedures reduced the overall number of potential predictors from 802 to 

between 64 to 94, and the LASSO procedure further reduced the number of candidate predictors 

to approximately 15 for each city and species. Final models included 7-8 main effect predictors 

and up to 4 interactions (with season in the city-specific models, and with season or city in the 

all-city models) (see Supplemental Material, Tables S2-S6 for lists of the predictors included in 

each final model according to city and exposure.). 

Overall our models fit the data well (Figure 2), explaining between 36 and 93% of the variability 

in PM10-2.5 mass and species concentrations under cross-validation (Table 3). For all cities, LUR 

always had comparable predictive performance as UK. Our LUR models performed generally 

better in Chicago and St. Paul compared to Winston-Salem, and had the most consistent 

predictive ability for silicon in models including data for all cities. The other models pooled 

across all cities demonstrated inconsistent performance at capturing within-city variability with 

the best within-city CV R2 ranging from 0.54 to 0.66 as compared to 0.0 to 0.34 for cities with 

the worst predictions. Again, UK models pooled across all cities generally had similar or lower 

model performance than their corresponding LUR models. 

Figure 1 shows the spatial patterns and distributions of predicted concentrations by city. PM10-2.5 

mass, silicon, and phosphorus had similar prediction ranges across all cities, whereas copper and 

zinc showed much higher predictions in Chicago and St Paul than Winston-Salem. The highest 

PM10-2.5 mass predictions were for the urban centers of Chicago and St Paul but in 
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Winston-Salem higher levels were predicted outside of the urban core. Across all three cities, 

copper and zinc exhibited higher concentrations in urban areas, with elevations of copper 

focused in areas of high intensity land use and along major roadways. Zinc was more evenly 

distributed throughout the Chicago and St Paul but was patterned with roadways in 

Winston-Salem. Silicon was highest in St Paul and most variable in Chicago where high 

concentrations were focused along an industrial corridor to the west of the city and lowest 

concentrations were found in the outlying areas. Phosphorus was similarly patterned in Chicago 

but less concentrated downtown. Predictions were highly variable for phosphorus in St Paul but 

consistently high in Winston-Salem, with higher predictions in the outlying areas. 

Supplemental Material, Tables S2-S6 show the estimated coefficients of the LUR models by city 

and pooled across cities. In general, PM10-2.5 mass, copper and zinc concentrations were 

associated with traffic-related features across the three cities (e.g., land use, distance to roads, 

sum of road length and sum of truck route lengths). Models for phosphorus and silicon 

concentrations consistently included vegetation features as predictors in St. Paul and 

Winston-Salem, but also included water features in Chicago. Vegetation appeared predictive 

across all mass and species models in Winston-Salem. Medium or high intensity of urban land 

use was predictive among all models for total mass and sum of road length was consistently 

included in all pooled models as were season and city. 

Sensitivity analyses indicated that two extreme measurements from St Paul were influential with 

weaker predictive performance without the outliers (CV R2 0.51 as compared to 0.65). Slightly 

improved model performance was found using land use from both the raster data and aerial 

photography as compared to either alone (Supplemental Material, Table S7). Models based on 

the natural log of PM10-2.5 levels and the iterative covariate selection approach proposed by Su 
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and colleagues (Su et al. 2009) showed generally poorer prediction performance as denoted by 

lower CV R2 and higher RMSE than those presented here (data not shown). 

Discussion  

This  study conducted spatially intensive  PM10-2.5  sampling  and developed two types  of  spatial  

prediction models  (LUR and UK) for PM10-2.5  mass  and chemical  components  (copper, 

phosphorus, silicon  and zinc) for use  in the  MESA  Coarse  epidemiology study. To our 

knowledge, this  is  one  of  the  first  studies  to develop  fine-scale  spatial  prediction  models  for 

PM10-2.5  mass  and chemical  components, which can serve  as  tracers  for different  sources  of  

pollution. We  demonstrated  that  geographic  covariates  can explain within-city variations  in 

concentrations  (mean CV  R2: 0.61)  though the  predictive  power varies  across  cities  and species  

(range  of  CV  R2:  0.36  to 0.93). By capturing  fine-scale  spatial  variability of  these  often 

heterogeneous  pollutants, this  work is  expected to substantially reduce  measurement  error and 

improve  our ability to investigate  the  long-term  health impacts  of  PM10-2.5  over  traditional  

approaches that rely on a limited number of     central monitoring stations.    

Across all models, there was some similarity in the spatial features predictive of concentrations, 

including high and medium intensity land use and indicators of traffic and vegetation, yet there 

was limited commonality in the key predictors. For example, variables related to traffic, 

high/medium development and residential areas were consistently selected in final models in 

Chicago, while indicators of vegetation were more consistently included in final models in 

Winston-Salem. This is consistent with the fact that Chicago is a more industrialized city with 

higher concentrations of copper and zinc than Winston-Salem, which is a smaller city. Similarly, 

water features appeared to be a stronger predictor of PM10-2.5 particles in St Paul than the other 

cities as this is a prominent feature of this region. Season modified the influence of certain 
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predictors, as would be expected given the presence of snow cover during winter periods in St 

Paul and Chicago and changes in vegetation across all areas. Although other characteristics of 

seasonality may influence PM10-2.5 concentrations, we did not have fine-scale spatial 

meteorology data to explicitly explore these associations. An analysis of wind speed and 

direction, however, failed to show a strong prevailing wind direction during our sampling 

periods suggesting that wind is likely not a strong predictor or modifier of concentrations. In 

addition, we did not identify important differences between our sampling periods and other 

typical weeks suggesting that our results should be representative of other time periods. Related 

to these area-specific differences, we were unable to identify robust predictions of within-city 

variability based on the same models for all cities (Supplemental Material, Tables S2-S6). 

Though some of our pooled models showed good performance in more than one city, no model 

worked well in all locations. Thus, while it is possible that these models may be generalized to 

other cities with similar characteristics, further validation is warranted before broad application. 

Predictive performance of our models was consistent with the one study from Europe and 

generally better than the few PM10-2.5 models in the United States. Using 20 to 40 monitoring 

stations in each of 20 European areas, similar CV R2 were reported as in our study (Eeftens CV 

R2: 0.03 to 0.73; Our MESA Coarse study CV R2: 0.41 to 0.68.) (Eeftens et al. 2012b). In a 

recent study from Ohio, Mukerjee et al. (2012) reported a R2 of 0.78 for their LUR model. As 

this was not derived from cross-validation in which some data is withheld from the model 

building step for validation, however, the predictive power would be inflated due to issues of 

overfitting. Also in the US, Yanosky and colleagues showed CV R2 values for PM10-2.5 were 0.39 

and 0.33 after and before 1999 for cities across the Northeastern and Midwestern United States, 

respectively. (Yanosky et al. 2009) Their lower predictive performance can be likely be 
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explained by their use of regulatory monitors, which are more sparse and reflect less variation in 

geographical predictors than the intensive campaigns of this, the European, and Ohio studies. 

Predicting PM10-2.5 indirectly by modeling PM2.5 and PM10 separately may also have influenced 

their models. Independent of the source of data, we generally found similar predictors to past 

work including proximity to roadways, land use, and vegetation. Also like our study, Eeftens et 

al. (2012b) indicates that key covariates differed by city. 

UK performed similarly to LUR for all cities suggesting limited spatial correlation of PM10-2.5 

after control for geographic covariates. An alternative explanation is that our relatively small 

sample size (N~30 to 40 locations in each city) may have limited the ability of our models to 

characterize fine-scale spatial structure of PM10-2.5. Our models should have captured at least 

some of the small scale correlation structure, if it substantially influenced predictions, given that 

distances between some of the sampled residences were small (minimum distances of 8, 64, and 

174 meters in Chicago, St. Paul, and Winston-Salem, respectively). 

Measured PM10-2.5 levels were generally lower than those reported in other major and small cities 

of the U.S, possibly because our study samples were exclusively collected at residual locations 

where there may be fewer sources of PM10-2.5. The average levels of PM10-2.5 measured at study 

locations in both Chicago and St. Paul (5-6 µg/m3) were comparable to those reported in 

residential neighborhoods in Detroit (6-7 µg/m3) (Thornburg et al. 2009), but much lower than 

reported for a variety of sites in Los Angles (5-14 µg/m3) (Pakbin et al. 2010), Philadelphia (5-9 

µg/m3) (Burton et al. 1996), Denver (9-6 µg/m3) (Clements et al. 2012) , Research Triangle Park 

(1-13 µg/m3) (Chen et al. 2007),and Central and Eastern European countries (12-40 and 6-24 

µg/m3) (Houthuijs et al. 2001; Eeftens et al. 2012a). While our means were lower, study 
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locations with the highest measured concentrations (12µg/m3 in Chicago and 17 µg/m3 in St 

Paul) were in line with concentrations reported by these other studies. 

Spatial variability also was lower than expected, which may also be due to sampling from 

residential locations only. Average PM10-2.5 concentrations were, however, generally comparable 

to those estimated by concurrent PM10 and PM2.5 AQS samples during the same two-week 

sampling periods. For example, the two-week averages of 4 available Chicago AQS sites were 

4.5 ± 5.3 and 6.1 ± 2.1 µg/m3 when we reported 5.5 ± 2.0 µg/m3 and 5.9 ± 2.1 µg/m3 in matched 

time periods. In Winston-Salem, one available AQS site had one two-week average of 3.7 ± 1.5 

µg/m3 when we observed 3.8 ± 1.6 µg/m3 and 2.4 ± 0.2 µg/m3 when we observed 3.5 ± 1.2 

µg/m3. In St. Paul, two available AQS sites had two-week mean levels of 6.6 ± 4.7 and 8.6 ± 4.6 

µg/m3 when our reported concentrations were 3.3 ± 2.2 and 6.7 ± 3.3 µg/ m3, respectively. 

This study has a few important strengths. First, we collected spatially-intensive samples of 

PM10-2.5 using the same sampling protocol in three US cities. Using a snapshot style campaign, 

we were able to predict PM10-2.5 mass at unmeasured locations based on geographic 

characteristics of that precise location. This represents a substantial improvement for predicting 

long-term concentrations at unmeasured locations compared to assigning the concentration of the 

nearest monitor or simple interpolation methods that do not consider the characteristics of a 

location other than latitude and longitude (e.g., inverse distance weighted method and ordinary 

kriging). By including chemical speciation of these particles, we are also the first to our 

knowledge to predict the spatial distribution of PM10-2.5components. This is important since 

components can be used as indicators of different source types in the related health study. This 

study has a few limitations. First, we used repeated two-week samples over one year to assess 

long-term exposures to PM10-2.5. While not an annual average, our sampling duration should be 
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sufficiently long to mitigate transient perturbations such as transient meteorological fluctuations 

and reflect average conditions. Comparisons with available data from AQS monitors suggest that 

average PM10-2.5 mass during our two-week sampling periods were highly correlated with, and 

within 15% of, the annual averages at the AQS stations. However, we cannot confirm our 

estimates for PM10-2.5 components, as measured values are not available for comparison. 

Additionally, our models were derived based on data collected during a single year, and thus 

may not be accurate for other time periods if spatial patterns vary over time. Spatial stability has 

been recently demonstrated for traffic-related gases in Vancouver over 7 years (Wang et al. 

2013) but is not guaranteed in other locations or for other pollutants. Other limitations pertain to 

our sampling locations. Although we attempted to capture different land uses, samples were 

collected at the homes of MESA participants thus our models may be more appropriate for 

predicting concentrations in residential areas than in industrial or commercial areas.. In addition, 

our models may not have captured very small scale spatial correlations, as only a few of the 

sampling locations were located within 100 meters of one another. Finally, while each 

component targeted for this analysis was intended to be common predictors of brake wear, tire 

wear, agriculture, and mineral dust across all cities, some caution is warranted in the strict 

interpretation of these indicator species since our tracers were not always unique to a single 

source (Sturtz et al. 2014). Research is ongoing to explore the spatial patterning of individual 

source contributions in further detail. 

Conclusions  

In summary, we demonstrated that a spatially intensive monitoring campaign was useful in 

predicting fine-scale spatial variability of PM10-2.5 mass and chemical component concentrations 

within and across three US cities. This research and the resulting prediction models represent a 
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substantial improvement for epidemiology over studies of PM10-2.5 that have previously assigned 

pollutant concentrations from a central site to an entire city. Some differences in predictive 

performance by city and species, however, implies that caution should be taken in epidemiology 

studies when drawing inferences about the comparative health impacts of pollutants estimated by 

these types of models. As such, investigators should be mindful that any observed differences in 

apparent toxicity may also be, at least partly, attributable to differential accuracy in estimating 

concentrations. 
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Table 1. Variables considered for spatial prediction models for PM10-2.5 mass and chemical 

component concentrations. 

Variables Units Buffer radii 
Land use: Satellite based 
Open water; Perennial ice or snow; Developed open space; Developed 
low intensity; Developed medium intensity; Developed high intensity; 
Bare rock/sand/barren/mine; Tree; Shrub land; Grasslands/herbaceous 
vegetation; Pasture/hay; Cultivated crops; and Woody wetlands. 

% 50, 100, 150, 300, 400, 
500, 750, 1000, 1500, 
3000, 5000m 

Land use: Aerial photography based 
Residential; Commercial and services; Industrial, Transportation, 
communications, and utilities; Other urban or built-up land; Mixed 
urban or built-up land; Strip mines, quarries, and gravel pits; Industrial 
and commercial complexes; and Transitional areas. 

% 50, 100, 150m 

Transportation 
Distance to the nearest A1/A2/A3 road m NA 
Length of A1/A2/A3 roads in buffers m 50, 100, 150, 300, 400, 

500, 750, 1000, 1500, 
3000, 5000m 

Distance to the nearest truck route/railroad/rail yard/airport/large port m 
Length of truck routes in buffers m 100, 150, 300, 400,500, 

750, 1000, 1500, 3000, 
5000. 10000, 15000m 

CALINE long-term averagea NA 1.5km, 3km, 4.5km, 
6km, 7.5km, 9km 

Population density 
Population density Person 

km-2 
3km, 5km, 10km, 15km 

Emissions 
Sum PM10-2.5 emissions tons 

year-1 
<3 km, 3-15 km, 3-30 
km 

Physical geographic information 

Latitude and longitude (X,Y) m NA 

Distance to main and local city hall m NA 
Imperviousness and NDVIb 

Imperviousness % 50, 100, 150, 300, 400, 
500, 750, 1000, 3000, 
5000 m 

NDVI in the 25 and 75 percentiles NA 250, 500, 1000, 5000 m 
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aCALINE long term average concentrations of a traffic-generated inert gaseous pollutant were 

generated from a line source dispersion model (CALINE3QHCR). bNormalized Difference 

Vegetation Index. 
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Table 2. Summary of statistics (mean ± SD) for PM10-2.5 mass (µg/m3) and chemical component 

(ng/m3) concentrations in each sampling city by season. 

City and Season a N Total mass Cu P Si Zn 

Chicago, IL 
Winter 33b 5.54 ± 1.98 7.83 ± 3.32 13.64 ± 6.00 428.24 ± 105.37 23.74 ± 18.36 

Summer 31 5.94 ± 2.09 7.10 ± 4.37 17.87 ± 3.87 306.84 ± 157.92 25.87 ± 22.85 
Pooled 64c 5.73 ± 2.03 7.47 ± 3.86 15.72 ± 5.46 368.51 ± 146.16 24.79 ± 20.55 

St. Paul, MN 
Winter 25 3.34 ± 2.22 4.01 ± 1.23 8.20 ± 4.68 266.04 ± 41.13 5.23 ± 3.42 
Summer 34 6.66 ± 3.33 2.77 ± 1.69 18.67 ± 5.44 719.31 ± 188.23 5.55 ± 7.03 
Pooled 59 5.25 ± 3.33 3.29 ± 1.63 14.23 ± 7.29 527.25 ± 268.13 5.42 ± 5.74 
Winston-Salem, NC 
Winter 35 3.46 ± 1.21 2.57 ± 1.23 12.83 ± 3.70 410.63 ± 85.93 3.31 ± 2.67 
Summer 28 3.83 ± 1.64 2.57 ± 1.46 25.90 ± 5.71 345.90 ± 109.79 2.76 ± 1.95 
Pooled 63 3.63 ± 1.42 2.57 ± 1.33 18.64 ± 8.04 381.86 ± 101.74 3.07 ± 2.37 
aAll sampling was conducted in 2009. Chicago: winter April 8–22, summer August 20–September 3; St. Paul: 

winter January 17–31, summer May 27–June 10; Winston-Salem: winter February 25–March 11, summer July 

6–20. b32 for the four species. c63 for the four species. 
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Table 3. Model performance (cross validated R2 and RMSE) for PM10-2.5 mass (µg/m3) and species concentrations (ng/m3) using land use 

regression (LUR) and universal kriging (UK). 

Model CV 
Measure 

Total Mass Cu P Si Zn 

Land Use Regressiona 

Chicago, IL R2 0.68 0.65 0.50 0.68 0.73 
Chicago, IL RMSE 1.16 2.29 3.88 82.10 10.63 
St Paul, MN R2 0.51 0.86 0.68 0.93 0.40 
St Paul, MN RMSE 2.33 0.61 4.14 72.60 4.44 
Winston Salem, NC R2 0.41 0.51 0.76 0.48 0.36 
Winston Salem, NC RMSE 1.09 0.93 3.95 73.10 1.89 
All citiesb R2 0.52, 0.54, 0.10 0.65, 0.49, 0.09 0.34, 0.59, 0.66 0.24, 0.64, 0 0.61, 0, 0 
All citiesb RMSE 1.39, 2.24, 1.33 2.26, 1.06, 1.25 4.39, 4.63, 4.66 126.36, 160.06, 119.10 12.72, 6.10, 3.58 
Universal Kriging 
Chicago, IL R2 0.68 0.64 0.50 0.68 0.73 
Chicago, IL RMSE 1.14 2.32 3.88 82.60 10.60 
St Paul, MN R2 0.51 0.86 0.68 0.91 0.38 
St Paul, MN RMSE 2.32 0.61 4.14 82.80 4.52 
Winston Salem, NC R2 0.41 0.51 0.76 0.47 0.36 
Winston Salem, NC RMSE 1.09 0.93 3.95 74.10 1.89 
All cities R2 0.51, 0.52, 0.11 0.20, 0.20, 0 0.15, 0.38, 0.65 0.22, 0.64, 0 0, 0, 0 
All cities RMSE 1.42, 2.29, 1.33 3.42, 1.34, 2.10 5.00, 5.67, 4.78 128.41, 159.27, 132.77 22.01, 7.66, 10.58 

aThe predictors included in each model are listed in Supplemental Material, Tables S2-S6. bFor pooled models across all cities we present 

the R2 for the explanatory power of each city as calculated by the formula (1 – sum of squared differences between observations and 

predictions / sum of squared differences between observations and city-specific means). We report any R2 with values less than 0 as 0. We 

report the RMSE for each city and calculated RMSE as the square root of the average of squared differences between observations and 

predictions. The respective R2 and RMSE values for each city are presented in the following order: Chicago, St. Paul, Winston-Salem. 
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Figure legends  

Figure 1. MESA Coarse measured vs. predicted concentrations for PM10-2.5 mass and chemical 

components in three US cities. 

Figure 2. Scatter plots between observations and the predictions from the “best” land use 

regression models by city and species (R2 = square of correlations between measurements and 

predictions). 
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Figure 1. 
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Figure 2. 
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